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Abstract. We consider non-interacting electrons in asymmetric quantum dots with either hard wall bound-
ary conditions (rectangular quantum dots) or anharmonic confinement (elliptic quantum dots). In both
cases, due to finite size effects, a homogeneous electric field applied along the long axis is shown to induce
abrupt changes in the electron density, parallel and perpendicular to the field direction. Making use of
this property, we propose a pure electrical mechanism to control the magnitude of the effective exchange
interaction between two weakly-coupled quantum dots. This kind of system has been proposed recently as
possible realization of quantum gates for quantum computation.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 85.35.Be Quantum well devices (quantum dots, quantum wires, etc.)

1 Introduction

Due to remarkable advances in microfabrication tech-
niques, it is possible nowadays to study the spectro-
scopic properties of single systems at mesoscopic or even
nanoscopic scale. These can be semiconductor quantum
dots [1,2], ultrasmall metallic particles [3] or, organic
molecules [4], for instance. This opens many new perspec-
tives for fundamental physics but also for the development
of new technologies. Indeed, on the one hand, it is possible
to study properties of very small systems where quantum
phenomena are prominent; on the other hand, one may
think of applying these new properties to go one step fur-
ther on the way to extreme miniaturization towards elec-
tronics at the nanometer scale. In this context, to under-
stand the behavior of small systems under the influence
of external excitations is a central issue, with the aim to
control the parameters of future nanodevices by external
sources. Here we focus our attention on DC homogeneous
electric fields applied on semiconductor quantum dots.
Since in all the above mentioned systems the electrons
are confined in a very small region of space giving rise to
discrete electronic spectra, we expect they should share
common features despite important differences. Therefore,
we believe some of the conclusions obtained below are rel-
evant for metallic particles and large organic molecules, as
well.

The problem of the influence of a DC electric field
on electronic systems has attracted a lot of interest since
many years. In any case, we don’t want to review this
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tremendous amount of articles but, instead, we content
ourselves to cite those of direct use for us. Most often in
the literature, this problem is treated in one-dimension,
either for free electrons [5,6] or for electrons in a periodic
potential [6,7], with the main focus on the Wannier-Stark
ladder problem in the latter case. Here we investigate sys-
tems with many channels. More precisely, we don’t con-
sider Zener tunnelling between bands, but we are rather
interested in effects caused by the interplay of the applied
electric field that distorts the electronic levels and Pauli’s
principle which acts as a kind of quantum pressure.

We consider asymmetric semiconductor quantum dots,
rectangular or elliptic, with characteristic sizes such that
their mean level spacing ranges in the meV region.
The electrons within the box are supposed to be non-
interacting or, in cases with two weakly coupled dots, the
Coulomb interaction is handled within the Heitler-London
approximation that is more or less equivalent to first or-
der perturbation theory. The homogeneous electric field,
E, is applied parallel to the long axis. A first obvious ef-
fect of the field is to polarize the electronic cloud in the
longitudinal direction i.e. parallel to the field direction.
Our purpose is to investigate another effect caused by the
finite size of the system. We consider two types of confine-
ment: infinite potential wall and harmonic confinement
plus a small anharmonic perturbation. In both cases, the
electric field is shown to induce at a critical value, Ec,
abrupt changes in the electron density parallel and per-
pendicular to the field direction. Despite the fact that no
interband coupling exists, the electric field modifies the
electron distribution among the different bands. The net
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effect of this redistribution is to decrease the longitudinal
polarization and to push the electrons toward the sur-
faces of the well perpendicularly to the field. This effect
is discussed here on the basis of simple models, with the
purpose of pointing out the basic mechanism at its origin
and its possible relevance in the context of nanophysics
and quantum computation. Indeed, as a first application,
we consider two lateral weakly coupled quantum dots: the
electric field is shown to modify abruptly the gap between
the lowest singlet and triplet states. This last point gives
a way to detect experimentally the effect predicted in this
work. Moreover, this property could have important ap-
plications in the context of quantum computation where
similar systems were proposed as possible realization of
quantum gates [8].

The paper is organized as follows. In Section 2 we in-
vestigate the case with hard wall boundary conditions, and
in Section 3 the case with a harmonic confinement plus a
perturbative anharmonic term. Finally, in Section 4, we
present our results for two weakly coupled quantum dots.

2 Rectangular potential wells with infinite
walls in an applied electric field

We start by considering a system of non-interacting elec-
trons confined in a rectangular potential well in the
xy-plane with infinite walls. The corresponding one-
electron time-independent Schrödinger equation in pres-
ence of an applied electric field is

− �
2

2m
∇2Ψ(x, y) + qExΨ(x, y) = εΨ(x, y) (1)

where m is the effective mass of the quasi-electrons, q
the electron charge (q < 0), E the applied electric field
and ε the energy eigenvalue. The wave functions fulfill the
hard-wall boundary conditions: Ψ(0, y) = Ψ(Lx, y) = 0
and Ψ(x, 0) = Ψ(x, Ly) = 0. We assume a rectangular box
such that Lx > Ly.

Without electric field (E = 0), we recover one of the
basic problems of quantum mechanics: the well known par-
ticle in the box problem in two dimension. The eigenen-
ergies are given by [9]

εnx,ny =
�

2

2m

[(
πnx

Lx

)2

+
(

πny

Ly

)2
]

(2)

where {nx, ny} ∈ N∗×N∗ (N∗ is the set of integers with-
out 0).

With electric field (E �= 0), since there is still no cou-
pling between the x and y coordinates, the wave functions
may again be written as a product: Ψ(x, y) = ϕ(x)ξ(y).
The corresponding energy eigenvalues are now given by
εny = �

2

2m

[
(πny

Ly
)2
]

+ e, since the equation for ξ(y) is the
one of a particle in a one dimensional box [9]. The equation
for ϕ(x) reads

− �
2

2m

d2

dx2
ϕ(x) + qExϕ(x) = eϕ(x). (3)

Solutions of this problem are well known for both infi-
nite [5] and finite size systems [6]. We closely follow these
two references.

We set ẽ = 2m
�2 e and F = − 2m

�2 qE and write down the
solution of equation (3) as a linear combination of Airy
functions [10], Ai and Bi,

ϕ(x) = αAi
(
−F 1/3

[
x +

ẽ

F

])

+ βBi
(
−F 1/3

[
x +

ẽ

F

])
(4)

where α and β are two real constants to be determined.
The wave functions should vanish at the frontiers of the
potential well, ϕ(0) = ϕ(Lx) = 0. These conditions help,
on the one hand, to fix the values of α and β, and, on the
other hand, to write down the secular equation that gives
the set of discrete eigenvalues, ẽ,

Ai
(− ẽF−2/3

)
Bi
(− LxF 1/3 − ẽF−2/3

)
− Ai

(− LxF 1/3 − ẽF−2/3
)
Bi
(− ẽF−2/3

)
= 0. (5)

We can equivalently express the Airy functions in terms of
Bessel functions of fractional order [10], J1/3 and J−1/3,

Ai(−z) =
√

z

3
(
J1/3(ζ) + J−1/3(ζ)

)
Bi(−z) =

√
z

3
(
J−1/3(ζ) − J1/3(ζ)

)
(6)

with ζ =
2
3
z3/2. The eigenvalue equation can then be

rewritten as

J1/3

(
2
3

ẽ3/2

F

)
J−1/3

(
2
3

[
LxF 1/3 + ẽF−2/3

]3/2
)

− J−1/3

(
2
3

ẽ3/2

F

)
J1/3

(
2
3

[
LxF 1/3 + ẽF−2/3

]3/2
)

= 0.

(7)

The equations (5) and (7) can be solved numerically,
but additional approximations may be applied for our
purpose. Indeed, especially at weak electric field, most
of the eigenvalues are such that ẽ3/2 � F . In this
case, we can make use of an asymptotic expansion of
the Bessel function [10] (when z → +∞, Jµ ∼ √

2/πz
cos(z − µπ/2 − π/4)) that greatly simplifies equation (7)
to yield

[
LxF 1/3 + ẽF−2/3

]3/2 − [ẽF−2/3
]3/2 = n

3π

2
(8)

with n ∈ N∗. The latter equation is easier to solve than
equation (7) and is very reliable for large n. In fact, for all
the cases we have considered, the results obtained from
equation (8) are in excellent agreement with the exact
ones, even for small n. To give an example, we get for
FLx = 10−2 a relative error of 10−4 for the first eigenen-
ergy, n = 1. The error rapidly decreases with increasing
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Fig. 1. The two lowest bands, ny = 1 and ny = 2, of a system
of non-interacting electrons confined in a rectangular potential

well such that Lx = 10Ly , in units of εny=1 = �
2

2mL2
y
. The

dashed curves are for E = 0, the full curves for E = 0.1 �
2

2m|q|L3
x
.

The positions of the bands with electric field are shifted down
by π2, for clarity. In both cases, the dots denote the position of
the discrete set of quantum states available due to finite sizes.
They are labelled by the integer n, equivalent to nx in the case
without electric field. The open diamonds and the open circles
are the doubly occupied levels in the case with 34 electrons
and Sz = 0, without and with electric field, respectively. The
electric field induces a change in the set of occupation numbers,
the ground state changing from 134 to 13222 (see text): two
electrons jump from the band ny = 1 to the band ny = 2.

values of n. Starting from equation (8), we may further
assume that ẽ � FLx. We can then expand the first
term of equation (8) in powers of FLx

ẽ . At first order
one gets, as expected, the non-interacting electron spec-
trum ẽ 	 (nπ

Lx
)2. Details about the opposite limit where

ẽ 
 FLx can be found in reference [6]. In any case, the
spectrum of the system with electric field is given by

εny(E) =
�

2

2m

[
ẽ +
(

πny

Ly

)2
]

. (9)

Examples are shown in Figure 1, for Lx = 10Ly. The two
lowest bands, ny = 1 and ny = 2, are shown with and
without electric field. One can notice that the distortion
of the bands induced by the electric field depends on the
energy or quantum number n of equation (8): it is rather
strong at low energies (small n) where a change of curva-
ture can be seen in our example, and turns into a uniform
shift at higher energies (large n). At zero temperature, the
ground state of the system with Ne electrons is determined
by filling up successively the one-electron eigenstates ac-
cording to Pauli’s principle. In analogy with classifications
used in atomic physics, it may be characterized by a set
of occupation numbers, Any(E), that give the number of
electrons in band ny at a particular electric field. The
ground state may then be characterized by the product∏

ny,Any �=0 n
Any
y meaning that the band ny is populated

by Any electrons; it gives a representation of the ground-
state electronic configuration. Since the magnitude of the
perturbation is not the same for every state ϕ(x), one
may expect the electric field to be able to induce changes

in the set of occupation numbers. Such an example is seen
in Figure 1, where we have considered 34 electrons, 17
with spin up and 17 with spin down. Without electric
field, only states in the lowest band are doubly occupied
(this is represented by the open diamonds in Fig. 1) and
in such a way that the lowest unoccupied level is in the
second band. With an electric field, the perturbation of
the lowest level of the second band is larger than the per-
turbation of the highest occupied level of the first band.
Consequently, an abrupt change in the set of occupation
number occurs once the electric field becomes larger than
a critical field, Ec, for which the lowest occupied and the
highest unoccupied levels become degenerate. The value
of this critical field dramatically depends on the geometry
of the box: we obtain for instance, Ec 	 0.1 �

2

2m|q|L3
x

for

Lx = 10Ly and Ec 	 0.01 �
2

2m|q|L3
x

for Lx = 9.8Ly. For the
case shown in Figure 1, the ground state is characterized
by the products 134, for E < Ec, and 13222, for E ≥ Ec.

Since a particular band, characterized by ny, is associ-
ated with a particular function ξny (y) =

√
2

Ly
sin(πny

Ly
y),

to a change in the occupation numbers, Any , corresponds
a change in the electron density in the direction perpen-
dicular to the applied electric field. This is well observed
in the transverse electron density, ρT (y, E), which is the
density with the x variable integrated out

ρT (y, E) =
∫ Lx

0

dxρ(x, y, E)

=
4

NeLy

∑
ny

Any (E) sin2 πny

Ly
y (10)

where the superscript T is for Transverse. This quantity
is expressed by the sum of the occupation numbers, Any ,
weighted by the square of the corresponding transverse
wavefunction, ξny . An example is shown in Figure 2, where
we have plotted the change of transverse density defined
as the difference of ρT (y, E) with and without electric field

δρT (y, E) = ρT (y, E) − ρT (y, 0)

=
4

NeLy

∑
ny

[
Any(E) − Any(0)

]
sin2 πny

Ly
y.

(11)

Since Any(E) = Any (0) for E < Ec, this is a discon-
tinuous function of the electric field, non-vanishing for
E > Ec only. In our example (Lx = 10Ly, Ne = 34),
at E = Ec = 0.1 �

2

2m|q|L3
x

two electrons jump from the
band ny = 1 to the band ny = 2 inducing the changes
seen in Figure 2: electrons leave the center of the dot to
reach the two edges parallel to the applied electric field.
Of course, this jump produces also a decrease of the lon-
gitudinal electric-polarization i.e. in the x-direction, an
example is given in the next section.

Before closing this section, we would like to comment a
little on the neglect of Coulomb interaction. In particular,
the screening of the applied electric field by the electrons
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Fig. 2. Changes in the transverse electron density, δρT (y,E),
of a system of non-interacting electrons confined in a rectangu-
lar box with hard-wall boundary conditions for E < Ec (dashed
curve) and for E > Ec (full curve). At a critical value, Ec, an
electric field induces abrupt changes in the set of occupation
numbers, Any , defining the ground state (see text) and, conse-
quently, in the transverse electron density. In this example, the
ground state changes from 134 to 13222. The value of the critical

field depends on the geometry of the well: it is Ec � 0.1 �
2

2m|q|L3
x

for Lx = 10Ly and Ec � 0.01 �
2

2m|q|L3
x

for Lx = 9.8Ly , for in-

stance.

is not taken into account in this work but we expect this
effect would not change qualitatively our conclusions. In-
deed, it was shown recently, in the context of molecular
electronics, that the screening properties of strictly one
dimensional systems or molecular wires are rather ineffi-
cient [11]: to consider the electric field to be unscreened
is then a good approximation in this case that should re-
main valid for the quasi-one dimensional systems that we
investigate, where only few channels are occupied.

3 Anharmonic oscillators with an applied
electric field

As a next example, we consider electrons within a two di-
mensional box as in the previous section, but with a more
realistic harmonic confinement. We assume the potential
to be asymmetric (elliptic dot) and we add a weak anhar-
monic term in the direction of the applied electric field. We
could also add anharmonicity in the y-direction but this
is not essential in the present context. The corresponding
one-particle time-independent Schrödinger equation is

− �
2

2m
∇2Ψ(x, y) +

[
1
2
mω2

xx2 +
1
2
mω2

yy2 + λx4 + qEx

]
× Ψ(x, y) = εΨ(x, y) (12)

where we assume ωx < ωy and λ > 0. In practice, there
is always anharmonic contributions in the electronic spec-
trum. Such contributions were for instance invoked to ac-
count for the depression of the ground state energy ob-
served in tunnelling spectroscopy [12,13]. It was moreover

demonstrated recently that a single quantum dot behaves
as an anharmonic emitter from photoluminescence spec-
troscopy where photon antibunching were observed [14].
Such anharmonicities can be due to confinement irreg-
ularities, for instance. More fundamentally, the poten-
tial should be determined self-consistently starting from
a more microscopic description of the dot that includes
Coulomb interaction. Following this way, to get the pre-
cise shape of the confining potential is however a difficult
task that was shown to depend on several parameters and
properties such as the temperature, the doping level, the
Fermi level pinning properties of lateral surfaces and the
lateral dimensions [15]. It is the result of complex electro-
static screening processes that give nevertheless evident
signs of anharmonicity for relevant choices of the param-
eters [15]. In any case, the anharmonic term introduces a
field-dependent perturbation which does not exist in the
pure harmonic case and which is crucial for our purpose,
as will be explained in the following two subsections.

3.1 Harmonic oscillators in an electric field

First, we neglect the anharmonic term and consider the
case without electric field, λ = E = 0. In this case one re-
covers the very well known two dimensional harmonic os-
cillator problem. The wave-functions are written as prod-
ucts, Ψnx,ny(x, y) = ϕnx(x)ϕny (y), with

ϕnu(u) =
(

β2
u

π

)1/4 1√
2nunu!

e−β2
uu2/2Hnu(βuu) (13)

where u = x/y, βu =
√

mωu

�
and Hnu is Hermite’s poly-

nomial of order nu. The corresponding eigenenergies are

εnx,ny =
(

nx +
1
2

)
�ωx +

(
ny +

1
2

)
�ωy (14)

where nx and ny are two integers [9].
With an applied electric field but without anharmonic-

ity, λ = 0 and E �= 0, the overall spectrum of the harmonic
oscillator is shifted by − q2E2

2mω2
x

which corresponds to a shift

of the center of mass by − qE
mω2

x
, in the x-direction. The

eigenfunctions become [9]

ϕnx(x, E) =
(

β2
x

π

)1/4 1√
2nxnx!

e
−β2

x

(
x+ qE

mω2
x

)2
/2

× Hnx

(
βx

(
x +

qE

mω2
x

))
. (15)

Since the perturbation induced by the field is the same for
all eigenenergies, there is no change in the set of occupa-
tion numbers, Any , and, thereby, in the electron density.
This property is very peculiar to the harmonic confine-
ment. The situation is very different with anharmonicity
as it is shown in the next subsection.
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3.2 Effects of anharmonicity

The anharmonic contribution breaks the well known prop-
erty of the harmonic oscillator with electric field discussed
above: with λ �= 0, the eigenenergies are not all shifted by
the same quantity but, instead, the changes induced by the
field depend on the quantum number nx as for the case
treated in Section 2. This is true whatever the magnitude
of λ. This is shown here by considering λ very small com-
pared to the other energy scales, λ/β4

x 
 �ωu (u = x/y),
for simplicity, but the conclusions that we obtain should
be qualitatively valid out of this regime as well. It has
been known that the perturbative expansion in λ is not
convergent but asymptotic [16]. Yet, the perturbative re-
sults may approximate the exact one if they are restricted
to low orders. We assume λ sufficiently small to consider
the anharmonic term at first order in perturbation theory
only. Although the range of validity of this treatment is
very restricted, our purpose is mainly qualitative and aims
at pointing out basic mechanisms rather than reaching a
quantitative description of the phenomenon that would
require more sophisticated approaches [16]. We calculate
the correction

∆nx(E) = λ

∫ +∞

−∞
dxϕ2

nx
(x, E)x4

= λ

∫ +∞

−∞
dxϕ2

nx
(x, 0)

(
x − qE

mω2
x

)4

. (16)

Exploiting the well known recurrence relation for Her-
mite’s polynomials, xHn(x) = nHn−1(x)+ 1

2Hn+1(x), and
noting that the integrals with odd power of x are null, we
get

∆nx(E) =
3
2

λ�
2

m2ω2
x

(
n2

x + nx +
1
2

)
+6λ

�q2E2

m3ω5
x

(
nx +

1
2

)
(17)

plus an overall shift of the spectrum, λ q4E4

m4ω8
x
, that plays no

role here; thus we neglect it in the following. The last term
of equation (17) is driven by anharmonicity and introduces
the explicit dependence on the applied electric field, E,
and on the quantum number, nx, mentioned above. This
type of correction also appears at higher order in pertur-
bation theory, stressing the fact that the effects describe
here occur at any λ: an applied electric field is able to
change the electronic configurations of the ground state
of elliptic quantum dots if anharmonicities are included.
We illustrate this property below by studying one partic-
ular example.

Using equation (17) and omitting the two uniform
shifts, the energies of the different levels can be deter-
mined at first order in perturbation theory: ε̃nx,ny =
εnx,ny + ∆nx(E). We consider a system with four elec-
trons, two spin up and two spin down, so that only the
two occupied and the first unoccupied levels should be
considered. One should stress that in order to observe dis-
continuities in the electron density at reasonable electric
field, the number of electrons in the dot has to be adjusted
in a way to reduce the gap between the highest occupied

level and the lowest unoccupied level; for our particular
example, the case with 4 particles is optimal in this re-
spect. We first introduce a parameter, δ, which control
the asymmetry of the harmonic confinement: ωx = ω − δ
and ωy = ω + δ. The energies of the three lowest levels
including the anharmonic corrections (17) are found to be⎧⎪⎪⎨

⎪⎪⎩
ε̃0,0(E) = �ω + 3

4
λ
β4

x
+ 3λ

x2
E

β2
x

ε̃1,0(E) = �(2ω − δ) + 15
4

λ
β4

x
+ 9λ

x2
E

β2
x

ε̃0,1(E) = �(2ω + δ) + 3
4

λ
β4

x
+ 3λ

x2
E

β2
x

(18)

where we have introduced xE = − qE
mω2

x
, the shift of the

center of mass induced by the electric field [9]. At a crit-
ical field, Ec, the ground state electronic configuration,∏

ny
n

Any
y , changes from 04 to 0212. The critical field is

such that ε̃1,0(Ec) = ε̃0,1(Ec); within our approximation
it is given by

Ec =
�ωxβx

|q|

√
2�δβ4

x − 3λ

6λ
. (19)

This change abruptly modifies the electron density in both
direction, x and y, which can be calculated, at our level of
approximation, by using the wave functions (13) and (15).

As already discussed for the case of hard-wall bound-
ary confinement, for E ≥ Ec the electronic cloud suddenly
swells in the y-direction, perpendicularly to the applied
field. The change of density in the transverse direction is
given by

δρT (y, E) =
1
2

√
β2

y

π
e−β2

yy2 (
2β2

yy2 − 1
)
Θ(E − Ec) (20)

where Θ(x) is the usual step function

Θ(x) =
{

0, if x < 0
1, if x ≥ 0

}
. (21)

Results for our example are shown in Figure 3: electrons
are transferred from the center to the edges of the elliptic
dot parallel to the direction of the field.

The center of mass of the electronic system is con-
tinuously shifted by xE in the longitudinal direction (the
x-direction) when the electric field is tuned. In addition,
at the transition, E = Ec, the internal structure of the
electronic cloud is modified in this direction too. To char-
acterize the changes, we may consider the difference be-
tween the longitudinal electron density i.e. the electron
density where the y-coordinate has been integrated out,
taken at two different values of the field, E+

c and E−
c ,

slightly above and below the transition, Ec, respectively:

δρL(x, E+
c , E−

c ) = ρL(x, E+
c ) − ρL(x, E−

c )

=
1
2

√
β2

x

π
e−β2

x(x−xE)2
(
1 − 2β2

x (x − xE)2
)

(22)

where ρL(x) =
∫ +∞
−∞ dyρ(x, y), ρ the electron density. Re-

sults for our example are shown in Figure 4 where we have
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Fig. 3. Changes in the transverse electron density, δρT (y,E),
of non-interacting electrons trapped in a harmonic potential
with an additional weak anharmonic term, λx4, for E < Ec

(dashed curve) and for E > Ec (full curve). In our example,

the ground state configuration,
∏

n
Any
y , changes from 04 to

0212, at E = Ec. As a consequence of that, some electrons
leave the center of the dot towards the edges parallel to the
direction of the applied field.

Fig. 4. Changes of electron density at E = Ec, in the longitu-
dinal direction (parallel to the applied field) of non-interacting
electrons trapped in a harmonic potential with an additional
weak anharmonic term, λx4. In our example, the ground state

configuration,
∏

n
Any
y , changes from 04 to 0212, at E = Ec.

The dashed lines show the longitudinal density at a value of the
field slightly smaller than Ec. The dotted-dashed lines show the
longitudinal density at a value of the field slightly higher than
Ec. The full lines show the changes in the longitudinal density
at the transition: electrons are transferred from the edges to
the center of the dot. Here, we take βxxE = 0.5 (see text).

taken βxxE = 0.5: electrons are transferred from the edges
perpendicular to the direction of the field to the center of
the dot.

In conclusion, at the transition the electronic cloud
grows in the transverse direction (y-direction) but is
slightly contracted in the longitudinal direction (x-
direction). For quantum dots in GaAs, �ωx is about a
few meV that corresponds to an effective length 1/βx of
a few tens of nanometers; with these conditions a typ-

ical value for the critical field, at which the transition
should occur, can be estimated with equation (19) to be
Ec ≈ 10−5 Vm−1, a value commonly used in most exper-
imental situations.

4 Two laterally coupled quantum dots

The effect pointed out above should have consequences
in various experimental situations. In this last section we
propose an experimental set-up that should enable to de-
tect it. It is inspired by a proposal made in the late 90’s
to use semiconductor quantum dots as building blocks
for possible future quantum computers [8,17,18]. Follow-
ing reference [17], we consider two lateral quantum dots
weakly tunnel-coupled [1] (see Fig. 5), described by the
following model

Ĥ =
∑
α

(
− �

2

2m
∇2

α + V (xα, yα) + λx4
α + qExα

)

+
1
2

∑
α�=β

q2

κ|rα − rβ | (23)

with

V (xα, yα) =
1
2
mω2

xx2
α +

1
2
mω2

y

(y2
α − a2)2

4a2
(24)

where the summation is over the particle indices, α and β.
The first term in brackets in equation (23) describes non-
interacting electrons in the xy-plane in a confined poten-
tial. The coupling between the two quantum dots is mod-
eled by the quartic potential V (x, y): it includes tunnelling
of electrons and is well approximated by two separate har-
monic potentials when the distance 2a between the dots
is large compared to the effective length 1/βy. Compared
to reference [17] we add the anharmonic contribution and
an applied electric field perpendicular to the line joining
the centers of the two quantum dots. The second term
of equation (23) is the Coulomb interaction; κ is the di-
electric constant and rα is the vector coordinates of the
electron α, in the 3D space.

By grouping the terms differently we can rewrite the
Hamiltonian Ĥ as follows

Ĥ =
∑

i=1,2

ĥi(rα) + Ŵrα) + Ĉ(rα, rβ) (25)

where

ĥ1/2(rα) =
∑
α

(
− �

2

2m
∇2

α +
1
2
mω2

xx2
α

+
1
2
mω2

y(yα ± a)2 + λx4
α + qExα

)
(26)

is the Hamiltonian for the isolated dot 1 (2) centered at
y = −a (y = +a) (see Fig. 5),

Ŵ (rα) =
∑

α

1
2
mω2

y

(
(y2

α − a2)2

4a2
− (yα + a)2 − (yα − a)2

)
(27)
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Fig. 5. Two laterally coupled elliptic quantum dots with a har-
monic confinement such that ωx < ωy (full lines). An applied
electric field along the x-axis shifts the position of the center
of mass of the two quantum dots, supposed to be identical, by
xE = − qE

mωx
(dashed lines).

is the potential obtained by subtracting to V the harmonic
contributions added to get equation (26) and Ĉ(rα, rβ) =
1
2

∑
α�=β

q2

κ|rα−rβ | is the Coulomb interaction. In the fol-
lowing we use equation (25) to perform our calculations.

We assume the two dots to be weakly coupled, meaning
that either the distance between them or the interdot bar-
rier is large. With our specific choice of confinement poten-
tial [17], equation (24), these two quantities are intimately
related i.e. it is equivalent to increase or decrease the in-
terdot distance and the interdot barrier. In the following,
we assume a > 1/βy. In this case, the overlap between two
wavefunctions centered on different dots is small and the
tunnelling probability of an electron from one dot to the
other is weak: the two dots can then be considered, at first
approximation, as being uncoupled and the analysis that
we have done in the previous section for one single dot
is relevant for the coupled system. We consider the case
with a small odd number of particles in each dot, leaving
one unpaired electron in dot 1 and dot 2. In this case, un-
der our assumptions, the orbital degree of freedom may be
considered to be frozen and the low-energy properties of
this system dominated by the ground singlet and triplet
states formed by the unpaired electrons. In these condi-
tions, it was argued that the low energy properties should
be well described by an effective Heisenberg Hamiltonian
for spin 1/2 [8,17,18],

ĤHeis = JS1 · S2 (28)

where the spin operators S1 and S2 are associated to the
spin of the unpaired electrons localized in dot 1 and dot 2,
respectively. The effective exchange integral, J , can be es-
timated starting from the more microscopic model (23):
it is defined as the energy difference between the lowest
triplet and singlet states. This equivalence was already
studied in details using microscopic models such as equa-
tion (23). The relevance of the Heisenberg model was
demonstrated, first, for the case with two electrons us-
ing the Heitler-London and Hund-Mullinken approaches
in reference [17] and a more involved molecular orbital cal-
culation in reference [18]. Later, the multielectron case was
studied in reference [19]. There, the Heisenberg model (28)

Fig. 6. Example of electronic configuration of two weakly-
coupled quantum dots with three electrons in each. An applied
electric field can change the energy order of the one-electron
states, (nx, ny), in each dot. a) For E < Ec, the states (0, 0) and
(1, 0) are populated. b) For E > Ec, the states (0, 0) and (0, 1)
are populated. At the critical field, Ec, the unpaired electrons
are transfered from the state (1, 0) to the state (0, 1) in each
dot.

was shown to provide a good effective description if the
degeneracies inherent of a 2D harmonic potential are lifted
by an additional perturbation that breaks the circular
symmetry: this is precisely the case we have considered
here where the dots are asymmetric.

The magnitude of the exchange integral, J , depends on
the Coulomb potential and the interdot tunnelling proba-
bility. Our basic idea may be summarized as follows. We
have seen, in the previous section, that an applied elec-
tric field along the x-direction may change abruptly the
electron density in the y-direction: in each dot, at a crit-
ical field, Ec, electrons are transferred from the center to
the boundaries. This phenomenon should contribute to in-
crease the overlap between the two electronic clouds cen-
tered in dot 1 and dot 2 and, therefore, it should modify
the magnitude of the effective exchange integral of equa-
tion (28). Consequently, depending on the magnitude of
the electric field one expects the system to be described by
two different Heisenberg models, with different exchange
integrals, J<, for E < Ec, and J>, for E > Ec. In
other words, the exchange interaction of the effective spin
model, equation (28), is a function of the electric field that
can be written as (see Fig. 7)

J(E) = J<Θ(Ec − E) + J>Θ(E − Ec). (29)

In the following, we determine these exchange integrals us-
ing a generalization of the Heitler-London method for the
hydrogen molecule to a number of electrons larger than
two [20]; this type of calculation is valid for large interdot
distances. Within this approximation we first consider the
solutions for the isolated non-interacting dots (Sect. 3) be-
fore using them to build the proper combinations of Slater
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determinants to describe the whole system with interac-
tion.

The ground state of each isolated dot has been stud-
ied in the previous section, at first order in perturbation
of λ. We start by introducing new fermionic operators,
L†

nx,ny,σ (R†
nx,ny,σ) which create one electron with spin σ

(↑ or ↓) in the orbital state labelled by the quantum num-
bers nx and ny in the left (right) dot; they are associated
with the wavefunctions ϕnx(βx(x − xE))ϕny (βy(y + a))
(ϕnx(βx(x − xE))ϕny (βy(y − a)) and energies ε̃nx,ny . We
specify our study to the case with three electrons in each
dot with the same number of spin up and down (Sz = 0).
In this case, it is sufficient to consider only the three lowest
levels (18). Using the previous results, one concludes that
the electronic configuration of the ground state changes
from 03, for E < Ec, to 0211, for E > Ec in each dot. This
is depicted schematically in Figure 6. Starting from these
solutions for isolated dots, we build for each of these two
cases, the singlet and triplet states of the whole system.
For E < Ec, we get

|Ψ<
± 〉 =

1√
2

(
|Ψ<

↑↓〉 ± |Ψ<
↓↑〉
)

(30)

with

|Ψ<
↑↓〉 = L†

0,0,↓L
†
0,0,↑R

†
0,0,↓R

†
0,0,↑R

†
1,0,↓L

†
1,0,↑|0〉

|Ψ<
↓↑〉 = L†

0,0,↓L
†
0,0,↑R

†
0,0,↓R

†
0,0,↑L

†
1,0,↓R

†
1,0,↑|0〉 (31)

and, in the same way, we get for E > Ec

|Ψ>
± 〉 =

1√
2

(
|Ψ>

↑↓〉 ± |Ψ>
↓↑〉
)

(32)

with

|Ψ>
↑↓〉 = L†

0,0,↓L
†
0,0,↑R

†
0,0,↓R

†
0,0,↑R

†
0,1,↓L

†
0,1,↑|0〉

|Ψ>
↓↑〉 = L†

0,0,↓L
†
0,0,↑R

†
0,0,↓R

†
0,0,↑L

†
0,1,↓R

†
0,1,↑|0〉 (33)

where the + sign is for the singlet, the — being for the
triplet, and |0〉 is the vacuum.

Next, after evaluating the triplet and singlet energy for
the two different cases,

ε<,>
± =

〈Ψ<,>
± |Ĥ |Ψ<,>

± 〉
〈Ψ<,>

± |Ψ<,>
± 〉 (34)

we can determine the exchange integrals, J< and J>, of
the effective Heisenberg model (28)

J< = ε<
− − ε<

+

J> = ε>
− − ε>

+ (35)

given by the difference between the triplet and the singlet
energy [17].

The wavefunctions used to describe the system are not
all orthogonal since

Sny,n′
y

=
∫ +∞

−∞
ϕny (y + a)ϕn′

y
(y − a) �= 0. (36)

J

J

J

<

>

EEc

Fig. 7. Exchange integral of the effective Heisenberg
model (28), describing the low-electronic properties of two
weakly coupled quantum dots with one unpaired electron in
each, as function of the applied electric field. At a critical field,
Ec, the electronic structure of each dot is modified which causes
a sudden jump of J , changing from J< to J>. At first approx-
imation the jump appears as a discontinuity (full curve); in
a more refined version, it is continuous (dashed curve). This
property may be used (i) to detect the effect predicted in this
work and, (ii) to perform a swap operation (see text) in the
context of quantum computation.

This property makes the calculation of the energies (34)
more cumbersome. However, using the wavefunction (13),
we can estimate that the overlap behaves as Sny,n′

y
=

(Polynomial of a) × e−β2
ya2

. Since we assume a to be rel-
atively large with respect to 1/βy, a reasonably good ap-
proximation consists to keep in the calculation, terms of
the type Sm

ny,n′
y

with m ≤ 2. With this simplification, after
lengthy but straightforward calculations, we obtain

J< = e−2β2
ya2

⎡
⎣q2

κ
R<

KK

⎛
⎝
√

β2
y − β2

x

βy

⎞
⎠

+
q2

κ
R<

EE

⎛
⎝
√

β2
y − β2

x

βy

⎞
⎠ +

3
2

�ωy

(
1 − 3β2

ya2
)]

(37)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R<
K =

√
2
π βx

12β4
x + β4

y − 15β2
xβ2

y

2(β2
y − β2

x)2

R<
E =

√
2
π βx

6β4
y − 5β2

xβ2
y

(β2
y − β2

x)2

(38)

and

J> = e−2β2
ya2

⎡
⎣q2

κ
R>

KK

⎛
⎝
√

β2
y − β2

x

βy

⎞
⎠+

q2

κ
R>

EE

×
⎛
⎝
√

β2
y−β2

x

βy

⎞
⎠+�ωy

(
2β2

ya2−1
)(−3

2
+

7
2
β2

ya2−9β4
ya4

)⎤⎦
(39)
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with⎧⎪⎪⎨
⎪⎪⎩

R>
K =

√
2
π βx

−β4
x+(48β4

ya4−48β2
ya2+15)β4

y+(8β2
ya2+2)β2

xβ2
y

2β2
y(β2

y−β2
x)

R>
E =

√
2
π βx

β2
x+(24β4

ya4−20β2
ya2+5)β2

y

β2
y−β2

x

(40)
where K and E are the complete elliptic integrals of the
first and second kind, respectively, defined as [10]

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

,

E(k) =
∫ π/2

0

dθ
√

1 − k2 sin2 θ. (41)

Some details about the calculation of the equations (37)
and (39) are summarized in the appendix below.

Although, the two expressions (37) and (39) are only
valid in the regime of weak anharmonicity, λ/β4

x 
 �ωx/y,
and large interdot distances, βya > 1, they allow us to il-
lustrate our purpose. Indeed, they show that the exchange
integral can be significantly modified by applying an elec-
tric field perpendicular to the axis joining the two dots.
Taking relevant numerical values for dots in GaAs [17],
�ωy = 3 meV, which corresponds to 1/βy = 20 nm,
and βyq2/κ/�ωy = 2.1 and specifying our system with
βya = 1.3, we get for βx/βy = 0.9, J< = 0.15 meV and
J> = 0.6 meV and, for βx/βy = 0.95, J< = 0.19 meV and
J> = 3.13 meV. We estimate the critical field in the latter
case by using equation (19): assuming λ/β4

x = 0.18 meV,
we obtain Ec = 35 × 10−7 Vm−1. In both cases, the en-
ergy difference between the singlet and triplet states is
large enough to be probed experimentally, as it was done
in reference [21] for two coupled dots with an exchange
energy tuned by an applied magnetic field as suggested
in reference [17]. However, one should keep in mind that
the numerical values given above have to be considered
with much care since our approximation to treat the an-
harmonic term is very restricted. Our work is mostly qual-
itative and the numerical applications serve to give orders
of magnitude only.

Up to now we have considered the states |Ψ<
± 〉 and |Ψ>

± 〉
as being orthogonal. In reality, couplings exist between the
states |Ψ<

+ 〉 and |Ψ<
− 〉, on the one hand, and the states |Ψ>

+ 〉
and |Ψ>

− 〉, on the other hand,

〈Ψ<
± |Ĥ |Ψ>

± 〉 = I± �= 0 (42)

due to Coulomb interaction. These terms , I±, mix the cor-
responding states together and the following linear com-
binations have to be considered⎧⎨

⎩
|Ψ+〉 = α+|Ψ<

+ 〉 + β+|Ψ>
+ 〉

|Ψ−〉 = α−|Ψ<
− 〉 + β−|Ψ>

− 〉
(43)

where the value of the coefficients α± and β± depends
on the applied electric field: at the transition, E = Ec,
|α±| = |β±| = 1/2 to become for electric field sufficiently

away from Ec, |α±| 	 1 and |β±| 	 0 for E < Ec and
|α±| 	 0 and |β±| 	 1 for E > Ec. Consequently, in
place of the discontinuous function presented above, equa-
tion (29), we get a continuous function changing from J<

to J> as shown schematically in Figure 7. The width of
the transition region is controlled by the magnitude of the
interaction, I±. The value of J can then be monitored
continuously between J< and J> by tuning the external
electric field: this property may be useful in the context
of quantum computation.

D. Loss and D.P. Di Vincenzo proposed to use a sys-
tem of two weakly coupled quantum dots as a possible
realization of quantum gate [8]. With one unpaired elec-
tron in each dot, the system is described by an effective
Heisenberg model such as (28). By changing the value of
the exchange energy with external sources in such a way
that

∫ τ

0 dtJ(t)/� = π, it would be possible to perform
a swap operation that exchanges the quantum state of
dot 1 and dot 2. When combined with single-qubit opera-
tions, this operation can be used to build a quantum XOR
gate that was earlier recognized to be a universal quan-
tum gate [22]: a XOR along with single-qubit operations
may be assembled to do any quantum computation. Thus,
the study of quantum gates is reduced to the study of the
exchange integral of the two dot system and in the way
it can be controlled experimentally. Two main approaches
have been proposed up to now to control J(t): (i) by a
local magnetic field perpendicular to the plane of the dots
and; (ii) by a local electric field parallel to the axis joining
the center of the two dots. Our proposal offers another
possibility. With respect to the method described in refer-
ence [17], the main advantages of the mechanism proposed
here are (i) to let the average charges unchanged within
the two dots, quantity that would be modified by an elec-
tric field applied along the y-axis (see Fig. 5); (ii) it is
easier to apply a local electric field than a local magnetic
field. We should also mention that an electric field per-
pendicular to the coupling direction was already proposed
as a possible control parameter in reference [23] but for
a system of two quantum dots of different size, vertically
coupled and with only one electron in each. In this case,
the effect described here don’t occur and the changes of
J are due to the fact that the shift, xE , induced by the
electric field has different magnitude for the two dots.

In order to test if our proposal could be used to per-
form a swap operation, further additional studies should
be undertaken using, on the one hand, more realistic mod-
els to describe the two dots systems and, on the other
hand, including dynamics since the time evolution of J is
the crucial quantity for quantum computation.

As a first remark, we would like to point out that there
is no need to consider identical dots in our scenario. Both
the number of particles within each dot and the geome-
try of the dots might be different. In such situation, the
exchange integral, J(E), should show two abrupt changes
instead of one at two different critical field, Ec1 and Ec2,
characterizing the sudden electronic modifications that
take place in the dot 1 and dot 2, respectively.
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As a last remark, we have seen that the electric field
induces degeneracy in the electronic spectrum at E = Ec.
In this case, the Coulomb interaction should play a cen-
tral role that could significantly modify our conclusions
for fields close to the critical value: in particular, the total
spin of the system may be changed. This kind of transi-
tions was already studied, for instance, in reference [24],
for cylinders pierced by an Aharonov-Bohm flux, and in
reference [25], for single-wall carbon nanotubes with an
inhomogeneous electric field.

5 Conclusion

To conclude, we summarize our main results. We have
considered systems of independent-electrons trapped in a
small region of space. Two confining potentials were stud-
ied as examples: hard wall boundary conditions and a har-
monic potential with an additional perturbative x4 term.
In both cases, an electric field was shown to cause abrupt
changes in the electron density at a critical value, Ec.
These changes occur not only in the direction parallel to
the field but also in the direction perpendicular to it; they
can be related to finite size effects. Exploiting this out-
come, we have then considered a system of two weakly
coupled quantum dots and shown that an applied homo-
geneous electric field is able to change abruptly the dif-
ference in energy between the lowest singlet and triplet
states. This property may serve to detect the effect pre-
dicted in this work and may eventually be important in the
context of quantum computation, since it could be used to
realize a quantum gate. Our results were obtained with the
help of deliberately oversimplified models, our aim being
to point out basic mechanisms. Additional studies based
on more realistic descriptions of semiconductor quantum
dots are needed both to confirm the relevance of the ef-
fects described in this work and to get better estimates of
the values of the different parameters needed for possible
experimental realization.

Appendix A: Calculation of the exchange
integrals J< and J>

In this appendix we give some details on the calculation of
equations (37) and (39), starting from equation (34) that
we rewrite as

ε<,>
± =

〈Ψ<,>
± |Ĥ |Ψ<,>

± 〉
〈Ψ<,>

± |Ψ<,>
± 〉 =

K<,> ± L<,>

S<,>
±

(A.1)

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K<,> = 〈Ψ<,>
↑↓ |Ĥ |Ψ<,>

↑↓ 〉 = 〈Ψ<,>
↓↑ |Ĥ |Ψ<,>

↓↑ 〉

L<,> = 〈Ψ<,>
↑↓ |Ĥ |Ψ<,>

↓↑ 〉 = 〈Ψ<,>
↓↑ |Ĥ |Ψ<,>

↑↓ 〉

S<,>
± = 〈Ψ<,>

↑↓ |Ψ<,>
↑↓ 〉 ± 〈Ψ<,>

↑↓ |Ψ<,>
↓↑ 〉.

(A.2)

We start by calculating the overlaps, S<,>
± . By apply-

ing Slater’s rules for matrix elements involving determi-
nants [26] and after straightforward integrations we found

{
S<
± = (1 − S2

0,0)
2(1 ± S2

0,0)

S>
± = (1−S0,0)2(1±S2

1,1)+S4
0,1(1±S2

0,0)−2S2
0,1(1±S0,0)

(A.3)
where S0,0 = e−β2

ya2
, S0,1 =

√
2ae−β2

ya2
and S1,1 = (2β2

y −
1)e−β2

ya2
.

Assuming βya 
 1, we keep in the calculation of ε<,>
±

terms up to second order in the overlap matrix element
Sny,n′

y
(Eq. (36)). Expending equations (A.1) and (35),

we found at this level of approximation

⎧⎨
⎩

J< = 2(S2
0,0K

< − L<)

J> = 2(S2
1,1K

> − L>)
(A.4)

where we have moreover to keep only terms of zeroth
order in Sny,n′

y
in K<,> and terms up to second order

in L<,>. Calculating K<,> and L<,> with the help of
Slater’s rules [26], we get the following detailed expres-
sions of J< and J>, where we have used the Hamil-
tonian in the form given by equation (25) and where
Ψnx,ny(x, y) = ϕnx(x)ϕny (y) (see Eq. (13)).

1. Detailed expression of J<

J< = 2S2
0,0

(
2
∫ ∫

dr1dr2Ψ2
0,0(x1, y1 + a)C(r1, r2)

× Ψ2
1,0(x2, y2 + a)

−
∫ ∫

dr1dr2Ψ0,0(x1, y1 + a)Ψ1,0(x1, y1 + a)C(r1, r2)

× Ψ0,0(x2, y2 + a)Ψ1,0(x2, y2 + a)

+
∫

dr1Ψ2
1,0(x1, y1 + a)W (r1)

+ 2
∫ ∫

dr1dr2Ψ2
0,0(x1, y1 − a)C(r1, r2)Ψ2

1,0(x2, y2 − a)

−
∫ ∫

dr1dr2Ψ0,0(x1, y1 − a)Ψ1,0(x1, y1 − a)C(r1, r2)

× Ψ0,0(x2, y2 − a)Ψ1,0(x2, y2 − a)

+
∫

dr1Ψ2
1,0(x1, y1 − a)W (r1)

)
− 2
∫ ∫

dr1dr2Ψ1,0(x1, y1 + a)Ψ1,0(x1, y1 − a)C(r1, r2)

× Ψ1,0(x2, y2 + a)Ψ1,0(x2, y2 − a)

− 4S0,0

∫
dr1Ψ1,0(x1, y1 + a)W (r1)Ψ1,0(x1, y1 − a).

(A.5)
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2. Detailed expression of J>

J> = 2S2
1,1

(
2
∫ ∫

dr1dr2Ψ2
0,0(x1, y1 + a)C(r1, r2)

× Ψ2
0,1(x2, y2 + a)

−
∫ ∫

dr1dr2Ψ0,0(x1, y1 + a)Ψ0,1(x1, y1 + a)C(r1, r2)

× Ψ0,0(x2, y2 + a)Ψ0,1(x2, y2 + a)

+
∫

dr1Ψ2
0,1(x1, y1 + a)W (r1)

+ 2
∫ ∫

dr1dr2Ψ2
0,0(x1, y1 − a)C(r1, r2)Ψ2

0,1(x2, y2 − a)

−
∫ ∫

dr1dr2Ψ0,0(x1, y1 − a)Ψ0,1(x1, y1 − a)C(r1, r2)

× Ψ0,0(x2, y2 − a)Ψ0,1(x2, y2 − a)

+
∫

dr1Ψ2
0,1(x1, y1 − a)W (r1)

)
− 2
∫ ∫

dr1dr2Ψ0,1(x1, y1 + a)Ψ0,1(x1, y1 − a)C(r1, r2)

× Ψ0,1(x2, y2 + a)Ψ0,1(x2, y2 − a)

− 4S1,1

∫
dr1Ψ0,1(x1, y1 + a)W (r1)Ψ0,1(x1, y1 − a).

(A.6)

Starting from equations (A.5) and (A.6) and using some
useful identities such as∫ π/2

0

dθ
cos2 θ√

(1 − k2 sin2 θ)3
=

1
k2

(
K(k) − E(k)

)

∫ π/2

0

dθ
cos4 θ√

(1 − k2 sin2 θ)5
=

1
3k2

(
(k4 − k2 − 2)K(k)

− 2(k2 + 1)E(k)
)

(A.7)

we finally get the expressions (37) and (39) for J< and
J>, respectively.
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